A.S:2010/2011

Devoir de contrôle N°3

Classes 4^{ème} sc

Durée: 2.h

Exercice N°1: (4pts)

Chaque question ci-dessous comporte trois réponses possibles. Pour chacune de ces questions, une seule des réponses proposées est exacte. On demande de choisir cette réponse.

L'espace rapporté à un repère orthonormé direct $(O, \vec{i}, \vec{j}, \vec{k})$

1/ Soit f la fonction définie sur \square par $f(x) = (1-x)e^x$. La valeur moyenne de f sur $\left[0,1\right]$ est égale à

b)
$$2 - e$$

c)
$$e-2$$

$$2/\lim_{x\to 0} \frac{e^x - e^{-x}}{x}$$
 est égale à

$$a) +\infty$$

3/ L'espace ξ est rapporté à un repère orthonormé direct $(O,\vec{i},\vec{j},\vec{k})$

Soit la sphère $(S): (x-1)^2 + (y-1)^2 + (z-1)^2 = 3$ et le plan P: 2x - y - z = 0. (S) et P sont

a) tangents

b) sécants

c) disjoints.

4/ Soit A et B deux points distincts de l'espace.

L'ensemble des points M tels que : $\overrightarrow{AM}.\overrightarrow{AB} = 0$ est

- a) une droite
- b) une sphère

c) un plan

Exercice N°2: (6 pts)

L'espace ξ est rapporté à un repère orthonormé direct $(O,\vec{i},\vec{j},\vec{k})$

Soit
$$S = \{ M(x, y, z) \in \xi; x^2 + y^2 + z^2 - 2x + 4y + 4z + 5 = 0 \}$$

1/ Montrer que S est une sphère dont on déterminera le centre I et le rayon R

2/ Soit P le plan dont une équation cartésienne est : x-2y+2z+2=0

- a) Montrer que l'intersection de la sphère S et du plan P est un cercle ζ
- b) Déterminer les coordonnées du centre A et le rayon r du cercle ζ

3/ Soit M(a, b, -1) un point de la sphère S où a et b sont deux réels et Q le plan dont une équation

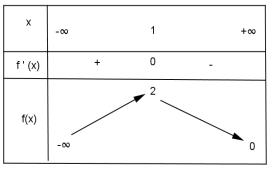
cartésienne est :
$$(a-1)x+(b+2)y+z-a+2b+3=0$$

- a) Montrer que M appartient au plan Q
- b) Montrer que S et Q sont tangents en M

Exercice N°3: (6 pts)

Soit f une fonction définie et dérivable sur \Box dont le tableau de variation est ci contre.

On désigne par (ζ_f) sa courbe représentative dans un R.O.N (O,\vec{i},\vec{j}) On suppose que (ζ_f) passe par l'origine du repère et que f'(0) = 2e



1/ Donner en justifiant la réponse

a) Un extrémum de f.

b) Une équation cartésienne d'une asymptote à (ζ_f) .

c) Une équation de cartésienne de la tangente à (ζ_f) au point d'abscisse 0.

2/ On suppose que dans la suite que $\,f(x)\,{=}\,2x\,e^{\left(1-x\right)}\,$, $\,x\,{\in}\,\Box$

a) Montrer que (ζ_f) admet une branche parabolique au voisinage de $(-\infty)$ et donner sa direction.

b) Montrer que (ζ_f) admet un point d'inflexion dont on précisera les coordonnées.

c) Construire (ζ_f)

3/a) A l'aide d'une intégration par parties, Calculer l'intégrale $I = \int_0^1 x e^{(1-x)} dx$

b) Déduire l'aire de la partie du plan limitée par (ζ_f) , les axes du repère et la droite d'équation x=1

Exercice N°4: (4 pts)

1/Soit f la fonction définie par : $f(x) = \frac{x^2}{x+1}$; $x \neq -1$ et (ζ_f) sa courbe représentative dans un R.O.N

a) Montrer que pour tout $x \ne -1$: $f(x)=x-1+\frac{1}{x+1}$

b) En déduire $I = \int_{0}^{1} f(x)dx$. Donner une interprétation graphique de I

2/a) Montrer que pour tout $x \in IR$: $\frac{e^{2x}}{e^x + 1} = e^x - \frac{e^x}{e^x + 1}$

b) Calculer $J = \int_{0}^{1} \frac{e^{2x}}{e^{x} + 1} dx$

c) Calculer à l'aide d'une intégration par partie : $K = \int_{0}^{1} e^{x} \ln(e^{x} + 1) dx$